Hypotheses testing and posterior concentration rates for semi-Markov processes

نویسندگان

چکیده

In this paper, we adopt a nonparametric Bayesian approach and investigate the asymptotic behavior of posterior distribution in continuous-time general state space semi-Markov processes. particular, obtain concentration rates for kernels. For purposes study, construct robust statistical tests between Hellinger balls around kernels present some specifications to particular cases, including discrete-time processes countable Markov The objective paper is provide sufficient conditions on priors that enable us establish rates.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Semi-markov Decision Processes

Considered are infinite horizon semi-Markov decision processes (SMDPs) with finite state and action spaces. Total expected discounted reward and long-run average expected reward optimality criteria are reviewed. Solution methodology for each criterion is given, constraints and variance sensitivity are also discussed.

متن کامل

Quantum semi-Markov processes.

We construct a large class of non-Markovian master equations that describe the dynamics of open quantum systems featuring strong memory effects, which relies on a quantum generalization of the concept of classical semi-Markov processes. General conditions for the complete positivity of the corresponding quantum dynamical maps are formulated. The resulting non-Markovian quantum processes allow t...

متن کامل

Semi-Markov Decision Processes

The previous chapter dealt with the discrete-time Markov decision model. In this model, decisions can be made only at fixed epochs t = 0, 1, . . . . However, in many stochastic control problems the times between the decision epochs are not constant but random. A possible tool for analysing such problems is the semiMarkov decision model. In Section 7.1 we discuss the basic elements of this model...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Statistical Inference for Stochastic Processes

سال: 2021

ISSN: ['1572-9311', '1387-0874']

DOI: https://doi.org/10.1007/s11203-021-09247-3